IOTest CD3-FITC / CD4-PE

REF A07733 50 определений; 1 мл 20 мкл / определение

IOTest Конъюгированное антитело

РУССКИЙ	Спецификации первого компонента	Спецификации второго компонента	
Специфичность	CD3	CD4	
Клон	UCHT1	13B8.2	
Гибридома	NS1 x Balb/c	NS1 x Balb/c	
Иммуноген	Т-клетки линии + IL2	Тимоциты человека	
Иммуноглобулин	IgG1	IgG1	
Вид животных	Мышь	Мышь	
Источник	Асцитическая жидкость или супернатант гибридомных клеток, льтивированных in vitro	Асцитическая жидкость или супернатант гибридомных клеток, льтивированных in vitro	
Способ очистки	Аффинная хроматография	Аффинная хроматография	
Флуорохром	Флуоресцеина изотиоционат (FITC)	Фикоэритрин R (PE)	
Молярная концентрация	FITC / Ig: 3.5 - 6	PE / Ig : 0.5 - 1.5	
λ возбуждения	488 нм	488 нм	
Пик эмиссии	525 нм	575 нм	
Буфер	Фосфатно-солевой буфер (PBS) с pH 7,2, содержащий бычий сывороточный альбумин в концентрации 2 мг/мл и 0,1% NaN ₃		

НАЗНАЧЕНИЕ

Данные конъюгированные с флуорохромом антитела предназначены для идентификации и подсчета популяций клеток, экспрессирующих антигены CD3 и CD4. Анализ выполняется в биологических образцах человека методом проточной цитометрии.

ПРИНЦИП АНАЛИЗА

Данный тест основан на способности специфических моноклональных антител связываться с антигенными детерминантами на поверхности лейкоцитов.

При инкубации образца с реагентом IOTest происходит специфическое окрашивание лейкоцитов. Затем выполняется лизис эритроцитов. Интактные лейкоциты анализируются на проточном цитофлуориметре.

Проточный цитофлуориметр измеряет светорассеивание и флуоресценцию клеток. позволяет вылепить (гейтировать) интересующую популяцию на диаграмме, отображающей светорассеивание в боковом направлении (Side Scatter или SS) и светорассеивание в прямом направлении под малыми углами (Forward Scatter или FS). гейтирования популяций использовать другие двупараметровые диаграммы в зависимости от используемого приложения.

Прибор выполняет анализ флуоресценции выбранной популяции, распознавая окрашенные и неокрашенные клетки. Результат представляется в виде процентного содержания положительных клеток от всех клеток выбранной популяции.

ПРИМЕРЫ КЛИНИЧЕСКОГО ПРИМЕНЕНИЯ

Обнаружение и подсчет CD4+ лимфоцитов при заболеваниях иммунной системы: СПИД (1) и другие иммуннодефицитные состояния, аутоиммунные заболевания (2), реакции гиперчувствительности, вирусные инфекции, восстановление иммунного ответа после трансплантации костного мозга и/или трансплантации органов. Фенотипирование и мониторинг CD4+ популяций при злокачественных новообразованиях крови, таких как лейкозы и лимфомы (3).

ХРАНЕНИЕ И СТАБИЛЬНОСТЬ

До и после распечатки флакона жидкие конъюгаты антител необходимо хранить при температуре $2-8^{\circ}C$ в защищенном от света месте.

Стабильность реагента в нераспечатанном флаконе: см. срок годности, указанный на этикетке флакона.

Стабильность реагента в распечатанном флаконе: 90 дней.

ПРЕДУПРЕЖДЕНИЯ

- Не используйте реагент с истекшим сроком годности.
- 2. Не замораживайте.
- Перед использованием реагента необходимо дождаться, пока его температура достигнет комнатной (18– 25°C).
- 4. Воздействие света на реагент должно быть сведено к минимуму.
- Избегайте контаминации реагента микроорганизмами, в противном случае возможно получение недостоверных результатов.
- Растворы антител, содержащие азид натрия (NaN₃), требуют осторожного обращения. Не проглатывайте, избегайте любого контакта с кожей, слизистыми оболочками и глазами.
 - В кислой среде азид натрия образует азотистоводородную кислоту, являющуюся потенциально опасным соединением. При утилизации реагента сливом В водопроводноканализационную систему рекомендуется развести реагент большим объемом воды. Это позволит избежать накопления азида натрия в металлических трубах и предотвратить образование взрывчатых веществ.
- Все образцы крови следует рассматривать как потенциально инфицированные. При работе с ними необходимо соблюдать все меры предосторожности (в частности, использовать защитные перчатки, халат и очки).
- Никогда не отбирайте образец через пипетку ртом. Избегайте контакта образца с кожей, слизистыми оболочками и глазами.
- 9. После завершения работы пробирки с кровью и все одноразовые материалы необходимо поместить в специальные контейнеры для утилизации.

ОБРАЗЦЫ

Венозную кровь или образцы костного мозга необходимо отбирать в стерильные пробирки, содержащие соль ЭДТА в качестве антикоагулянта. Использование других антикоагулянтов не рекомендуется. Образцы должны храниться при комнатной температуре (18–25°С). Встряхивание образцов не допускается. Перед отбором гомогенизировать, аккуратно перемешав. Анализ образцов необходимо выполнить в течение 24 часов после отбора.

МЕТОДИКА НЕОБХОДИМЫЕ, НО НЕПОСТАВЛЯЕМЫЕ МАТЕРИАЛЫ

- Пробирки и материалы для отбора проб.
- Автоматические пипетки с одноразовыми наконечниками объемом 20, 100 и 500 мкл.
- Пластиковые пробирки для гемолиза.
- Калибровочные частицы: флуоросферы Flow-Set (каталожный номер 6607007)
- Реагент для лизиса эритроцитов с отмывкой после лизиса, например, VersaLyse (каталожный номер A09777).
- Реагент для фиксации лейкоцитов, например, IOTest 3 Fixative Solution (каталожный номер A07800).
- Изотипический контроль: pearent IOTest. IgG1-FITC / IgG1-PE (каталожный номер A07794).
- Буфер (PBS: 0,01 M фосфат натрия; 0,145 M хлорид натрия; pH 7,2).
- Центрифуга.
- Перемешивающее устройство (вортекс).
- Проточный цитофлуориметр.

ПОДГОТОВКА ПРОБ

ЗАМЕЧАНИЕ: Приведенная ниже процедура валидирована для работы со стандартными приложениями. При выполнении некоторых приложений Весктап Coulter может потребоваться другой объем образца и/ или реагента VersaLyse. В этом случае следуйте указаниям руководства для конкретного приложения.

При исследовании каждого образца необходимо проанализировать дополнительную пробирку, содержащую смесь образца с изотипическим контролем (каталожный номер А07794).

 В каждую из пробирок для анализа клинических образцов добавьте по 20 мкл конъюгатов антител IOTest, а в каждую из пробирок для анализа контролей – по 20 мкл изотипического контроля.

- 2. В обе пробирки добавьте по 100 мкл образца. Аккуратно перемешайте на вортексе.
- 3. Инкубируйте в течение 15–20 минут при комнатной температуре (18–25°C) в защищенном от света месте.
- 4. Если требуется, выполните лизис эритроцитов, следуя рекомендациям изготовителя лизирующего реагента. Например, при использовании реагента VersaLyse (каталожный номер A09777) следуйте указаниям инструкции к этому Рекомендуется реагенту. выполнить процедуру одновременной «c фиксацией». Для этого добавьте к образцу 1 мл свежеприготовленного раствора для фиксации и лизиса. Немедленно перемешайте на вортексе в
 - в защищенном от света месте. Если образец не содержит эритроцитов, добавьте 2 мл PBS.

течение 1 секунды. Инкубируйте 10 минут

температуре

- 5. Отцентрифугируйте в течение 5 минут при 150 х g при комнатной температуре.
- 6. Удалите супернатант аспирацией.

комнатной

- 7. Ресуспендируйте осадок клеток в 3 мл PBS.
- 8. Повторите шаг 5.
- Удалите супернатант аспирацией и ресуспендируйте клетки:
- в 0,5 или 1 мл PBS, содержащем 0,1% формальдегид, если подготовленная проба будет храниться от 2 до 24 часов. (Данный раствор можно получить, если в 1 мл PBS развести 12,5 мкл реагента IOTest 3 Fixative Solution (каталожный номер А07800) в 10X концентрации.)
- в 0,5 или 1 мл PBS без формальдегида, если подготовленная проба будет проанализирована в течение 2 часов.

ЗАМЕЧАНИЕ: Независимо от способа пробоподготовки готовые пробы необходимо хранить при температуре 2–8°C в защищенном от света месте.

СПЕЦИАЛЬНЫЕ ХАРАКТЕРИСТИКИ

Данные о работе системы получены с применением описанной выше процедуры на образцах крови, собранных за 24 часа до исследования в стерильные пробирки, содержащие ЭДТА в качестве антикоагулянта. Анализ выполнен не позднее чем через 2 часа после иммунного окрашивания.

СПЕЦИФИЧНОСТЬ

Моноклональные антитела UCHT1 взаимодействуют с ϵ цепью комплекса CD3 (4).

На первой Международной конференции по дифференцировочным антигенам лейкоцитов человека (1st HLDA Workshop), проходившей в Париже, Франция, в 1982 г., было подтверждено, что моноклональные антитела UCHT1 направлены против CD3 (WS Code: 3, Section T) (5).

Моноклональные антитела клона 13В8.2 распознают эпитоп, расположенный в Ідподобном V1-регионе антигена CD4. Исследование карты эпитопов с помощью

мутаций во внецитоплазматических областях молекулы показало, что связывание антител клона 13B8.2 с CD4 нарушалось только при мутации, затрагивающим остатки 88 и/или 89 (6). Моноклональные антитела 13B8.2 ингибируют связывание HIV-1 с клетками *in vitro*.

На третьей Международной конференции по дифференцировочным антигенам лейкоцитов человека (3^{rd} HLDA Workshop), проходившей в Оксфорде, Англия в 1986 г. было подтверждено, что моноклональные антитела 13B8.2 направлены против CD4 (WS Code). 501, Section; T) (7).

ДИАПАЗОН ЛИНЕЙНОСТИ

Для проверки линейности окрашивания данным реагентом были смешаны в различных пропорциях клетки положительной линии (HPBALL) и клетки отрицательной линии (DAUDI). Общее количество клеток в образце оставалось постоянным. Соотношение клеток положительной и отрицательной линий изменялось от 0 до 100%.

Аликвоты были окрашены в соответствии с описанной выше методикой. На основании полученных и ожидаемых значений вычислялась линейная регрессия.

Специфичность	Линейная регрессия	Линейность (R ²)	
CD3	Y = 0,97X + 1,11	0,999	
CD4	Y = 0.99X - 0.23	0,999	

ОЖИДАЕМЫЕ ЗНАЧЕНИЯ

Каждая лаборатория должна определить собственные референсные значения на основании исследований образцов крови здоровых доноров из местной популяции. При этом необходимо учитывать возраст, пол и этническую принадлежность доноров, а также другие возможные межрегиональные различия. В наших лабораториях использовались

В наших лабораториях использовались образцы крови 50 здоровых взрослых доноров. В таблице ниже представлены результаты подсчета положительных событий:

Лимфоциты	Кол-во	Среднее	SD	CV
	образцов	(%)		(%)
CD3 ⁺	50	66,51	9,90	14,89
CD4 ⁺	50	55,91	10,82	19,35

ВНУТРИЛАБОРАТОРНАЯ ВОСПРОИЗВОДИМОСТЬ РЕЗУЛЬТАТОВ

В один день на одном цитофлуориметре определялось процентное содержание положительных клеток (лимфоцитов) целевой популяции. Измерение Полученные выполнялось 12 раз. результаты в следующей представлены таблице:

Целевая популяция	Кол-во измерений	Среднее (%)	SD	CV (%)
Лимфоциты CD3+	12	59,40	0,69	1,2
Лимфоциты CD4+	12	42,56	0,84	2,0

ОГРАНИЧЕНИЯ МЕТОДА

- 1. При неправильной настройке цитофлуориметра, неверной компенсации флуоресценции и неправильном расположении регионов могут быть получены недостоверные результаты.
- Рекомендуется выполнять лизис эритроцитов с отмывкой, поскольку данный реагент не оптимизирован для процедуры лизирования без отмывки.
- Для получения точных и воспроизводимых результатов необходимо соблюдать все приведенные инструкции и следовать нормативам надлежащей лабораторной практики (GLP).
- Конъюгаты антител данного реагента откалиброваны получения для наилучшего соотношения специфического и неспецифического сигналов. Поэтому каждом В исследовании необходимо строго соблюдать соотношение между объемом реагента и объемом образца.
- При гиперлейкоцитозе образец следует развести PBS до концентрации примерно 5 x 10⁹ лейкоцитов/л.
- 6. При некоторых заболеваниях, таких как тяжелая почечная недостаточность или гемоглобинопатия, лизис эритроцитов может происходить медленно, не полностью или совсем не происходить. В этом случае перед окрашиванием рекомендуется выделить мононуклеарные клетки в градиенте плотности (например, фикола).

PA3HOE

Примеры (Examples) и ссылки (References) смотрите в Приложении (Appendix).

ТОРГОВЫЕ МАРКИ

Поготип Beckman Coulter, COULTER, EPICS, Flow-Set, IOTest, System II, VersaLyse и XL являются товарными знаками Beckman Coulter; поготип Beckman Coulter, IOTest и VersaLyse зарегистрированы в USPTO и SIPO.

изготовитель:

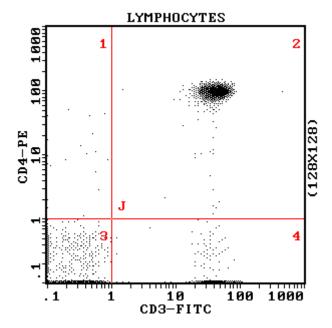
IMMUNOTECH SAS a Beckman Coulter Company 130 avenue de Lattre de Tassigny B.P. 177 – 13276 Marseille Cedex 9 Франция

Отдел обслуживания клиентов: (33) 4 91 17 27 27

www.beckmancoulter.com

Made in France.

© 2012 Beckman Coulter, Inc. Все права защищены.



APPENDIX TO REF A07733

EXAMPLES

The graphs below is biparametric representations (vs. Fluorescence Intensity) of lyzed normal whole blood sample. Staining is with IOTest CD3-FITC/CD4-PE Conjugated Antibody (Ref. A07733). Gate is on lymphocytes. The mouse FITC/PE conjugated IgG1 isotypic control (Ref. A07794) used is not shown.

Acquisition and analysis are performed with a COULTER EPICS XL flow cytometer equipped with System II software.

REFERENCES

- Schenker, E.L., Hultin, L.E., Bauer, K.D., Ferbas, J., Margolick, J.B., and Giorgi, J.V. Evaluation of a dual-color flow cytometry immunophenotyping panel in a multicenter quality assurance program. Cytometry. 1993; 14 (3):307-17.
- van Agthoven, A., Terhorst, C., Reinherz, E.L., Schlossman, S.F., "Characterization of T cell surface glycoproteins T1 and T3 present on all human peripheral T lymphocytes and functional mature T lymphocytes", 1981, Eur. J. Immunol., 11, 18-21.
- Vaickus, L., Ball, E.D., Foon, K.A., "Immune markers in hematologic malignancies", 1991, Critical reviews in oncology/hematology, 11, 267-297.
- Tunnacliffe, A., Olsson, C., Traunecker, A., Krissansen, G.W., Karjalainen, K., De la Hera, A., "The majority of CD3 epitopes are conferred by the ε chain", 1989, Leucocyte Typing IV, White Cell Differentiation Antigens. W. Knapp, et al., Eds., Oxford University Press, 295-296.
- Bernard, A., Brottier, P., Georget, E., Lepage, V., Boumsell, L., "Joint report of the first international workshop on human leucocyte differentiation antigens by the investigators of the participating laboratories", 1984, Leucocyte Typing I, Bernard, A. et al., Springer Verlag, 9-135.
- Sprent, J., "T lymphocytes and the thymus", 1989, Fundamental Immunology, Chap 4, 2nd Ed., 69-93.
- Taylor, G.M., Williams, A., Morten, J., Morten, H., "Analysis of CD4 monoclonal antibodies using human X mouse hybrid celllines OKT4", 1987, Leucocyte Typing III, White Cell Differentiation Antigens, A.J. McMichael, p. 234-238.